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1. Introduction
1.1. Motivation and Project Topic
The study of sub-cellular systems is a convergence of biology, chemistry and physics. The biological contribution is obvious; the function of cells provides a context and motivation for the study of their internal structure. Chemistry brings an understanding molecular structures and interactions. Physics brings an understanding of thermo- and fluid dynamics. It is through the union of these three fields that a detailed picture of sub-cellular systems is beginning to emerge. 

There is still much work to be done and many problems to be overcome, before the picture is complete. One problem is that technology is not yet accurate enough able to answer every question. In many cases the best it can do is offer clues in the form of snapshots (from cryoelectron microscopy, for instance) and indirect data. 

One area of particular interest is the study of proteins and proteins systems. Proteins are a complex and diverse family of molecules which affect, at many levels, both the structure and function of cells. Proteins have been studied in much detail and detailed understandings of some have arisen from a combination of empirical evidence and clever deduction. Historically it has been deduction which has played the greater role and although empirical techniques are improving, the need for deduction is still strong. 

Deduction, powerful though it is, is time consuming to apply. Computers have helped in one respect, by speeding up the analysis of data, but interpreting the results is still heavily reliant on human intuition. 

There is another contribution made by computers to the study of proteins and sub-cellular systems in general: simulation. Simulation is a process whereby models of the system of interest are created from the available data. These models are then solved with the results typically being displayed graphically. From this, behaviour of the system can be observed at levels not possible in empirical studies. Although the computer is not performing deduction explicitly, it makes presents the data in such away that an observer can easily make deductions from it. Hence, simulation can be used to reduce the time taken to gain an understanding of protein systems.

While protein simulations have be applied extensively in the study of individual proteins, they have not yet been used widely in the study of multi-protein systems. There have been some examples dealing with a specific system or class of systems. These typically employ and solve sets of equations derived to describe a given phenomena, e.g. the rates of polymerisation in the construction of microtubules. 

Such simulations allow the analysis of behaviours which are already well understood. They do not, however, present much opportunity to discover new behaviours. This reliance on equations describing system behaviour limits both the generality and usefulness of such simulations.

What is of particular interest in the study of proteins is behaviour which is not yet understood, and possibly not even known to exist. If a simulation is to produce such behaviour then it must describe the system in a physically realistic way. By modelling the physical basis of protein systems it is possible to observe the behaviour of systems which can not be analysed experimentally. A physically based simulation toolkit has the further advantage of generality; in theory any protein system should be describable if the physical basis of the simulation is suitable complete.

This project aims to develop such a toolkit. The toolkit will provide a set of primitives whose physical properties are known. These primitives will be able to combine to produce protein structures whose overall behaviour is unknown. By solving the interaction of the primitives over time the behaviour of the system as a whole should emerge. By displaying the system graphically it will be possible to observe the predicted behaviour of the system.

The behaviour predicted by the simulation will not provide absolute proof that the behaviour observed occurs in reality (any simulation will only approximate real systems, which are far too complex to represent in their entirety). It will, however, suggest likely behaviour which can be used to direct experimentation and deduction on real systems.

As proof of the simulation toolkit which will be developed by this project, a sample protein system will be modelled. This sample application involves the transportation of chemicals by kinesin, a member of the motor protein family. The behaviour of this particular protein system is quite well understood, though some controversies remain. The use of a system with known behaviour will aid in the validation and verification of the design, and will allow a degree of confidence that the toolkit can handle unknown systems to be established. 

1.2. Previous Work

This work undertaken in this project is based on an understanding of proteins and cellular environments compiled from a number of publications, the most influential of which are presented here.

Lodish et al. ([MCB99]) provide a good introduction to the function of cells and, in particular, their molecular mechanisms. 

In [How01], Howard studies in depth a mechanical basis for the workings of motor proteins and indeed proteins in general. Howard’s work forms the base from which much of this project has developed. While this project does not implement the primitives he suggests for protein simulations (masses, dashpots and springs), it is from his work that much of the inspiration and many equations for the implemented primitives and operations are taken. Howard also presents a detailed analysis of the workings of the kinesin transportation mechanism, the results of which are used in the implementation of the sample application. 

Block ([Blo98]) provides a discussion of kinesin and the current level of knowledge about it. He also explores in detail the areas in which uncertainty remains over kinesin’s operation. While the fast pace of developments in the study of proteins mean that some of the uncertainties Block introduces have now been resolved (see [How01]), the rest remain pertinent. 

In [Con01] Bao and Tsourkas present a view of hinged areas within proteins which influenced the design of the hinge primitive presented in this project.

McCammon’s work ([McCam]) on Brownian dynamics theory develops a set of equations of protein level forces subject to viscous drag which, in conjunction with some common results presented in [How01], form the basis of the displacement calculations implemented by this project.

As well as publications concerning the biology of protein systems, this project has also required research into simulation techniques. Once again the most influential are presented.

Hecker ([Hec96]) provides an easily readable account of physically realistic simulations. While none of the equations he presents are used in this project (due to their presupposition of the dominance of inertial forces over thermal which, as will be seen, is not valid for sub-cellular systems), his work deserves a mention as the inspiration for the use of rigid bodies in simulation (later reinforced by other works).

In ([Kal95]), Kalra builds on the work of Bazel and Barr ([BB88]) to develop a formulation for specifying assemblies of rigid bodies. While the work presented in both papers was developed for inertial systems, they provided inspiration for the development of structures in thermal systems, in the form of constraints on motion. Not all of the work was of use applicable though, and as is discussed later, attempts to generalise Kalra’s systems of equations to handle non-contrived simulations lead to computationally complex systems of inequations.

In his PhD thesis, Betts ([Bet00]) develops a simulation system which is probably the closest work to that being carried out in this project. Betts’ work is concerned with the study of the polymerisation of large protein structures such as the microtubule (the same structure involved in the sample application for this project). His work aims for generality by evolving systems in a physically realistic manner. The one potential criticism of Betts’ otherwise good work is that the generality he aims for is compromised by his failure to develop a basic set of primitives for building components in the simulation. As a result, only components whose behaviours are specifically coded (typically using component specific equations) can be used in simulations. 

1.3. Achievements
This project attains many achievements at many different levels.

It develops an original paradigm for the description of protein systems. Computationally efficient algorithms are derived allowing the solution of these descriptions. The paradigm is extended to incorporate a sophisticated framework for the rapid development of simulations.

An implementation of the design is produced, incorporating a user interface and 3D rendering of the simulation scene. In the process an extension to Java Swing is created allowing it to correctly integrate with Java3D. Proficiency in both these technologies has also been achieved through their use in this project. 

A verification and validation of the system is made, as a result of which a flaw in the implementation is discovered and possible alternatives proposed.

The sample application for this project is designed and implemented, showing that the simulation toolkit can be successfully applied to create dynamic protein simulations.

The sample application section sees the design and implementation of a protein system, which shows that the generality of the design can be applied to successfully create a dynamic protein simulation.

1.4. Content Summary
The emphasis of this report is largely design-centric. This is in recognition of the central importance of a strong design to the usefulness of a simulation toolkit. The user interface and the graphical display of simulations have been anticipated in the design of the simulation engine and as a result they have relatively straight-forward designs. As such, a discussion of them will be postponed until the implementation section.. 

This report is organised into the following sections:

· Background and Requirements

· System Design

· System Implementation 

· Validation and Verification

· Evaluation 
· Sample Application
· Conclusion

The background and requirements section introduces proteins and the sample application. It then introduces the physical, chemical and biological components of sub-cellular systems and the extent to which these have a bearing on simulations. By identifying the important aspects, this section sets the scene for the design of a framework capable of fully specifying simulation systems and computing their development over time.

The system design section is, as indicated above, the largest section in the report. With reference to the requirements laid out in the previous section, this section develops a robust framework for the creation and evolution of dynamic protein systems. It begins by laying down the design of a set of primitives from which all objects in the simulation are constructed. It then presents an object-oriented framework which serves to both facilitate simulation creation and to introduce dynamic behaviour into these simulations. Finally it produces a sequence of operations which allow the development of the simulation over time to be evaluated computationally.

In the system implementation section the actual implementation of the design will be discussed. In addition this section will present the user interface and graphical display which combine to form a front-end to the simulation core.

Validation and verification of the design and implementation will be undertaken next, building up an understanding of the extent to which the system can be considered accurate.

This is followed by an evaluation of the system (design and implementation) with respect to criteria such as accuracy and ease of use. 
The sample application section discusses the details of the design, implementation and evaluation of the application.
The report is concluded with a section reviewing the main achievements of the project and discussing future extensions to the work.
2. Background and Requirements

This chapter consists of three main sections. The first section introduces the main participant in the systems of interest, proteins. The second section details the components of the particular protein system which will be implemented as a sample application of the toolkit. Finally this section evaluates the factors affecting protein systems and from this draws up a set of requirements which a simulation toolkit should satisfy if it is to produce accurate simulations.
2.1. Background

2.1.1. Proteins

Proteins are the most abundant of all biological molecules. Synthesised from DNA, they are found in all living cells and account for approximately 50% of the dry weight of these cells. Proteins are large molecules with molecular weights ranging from 10,000 to 1,000,000 [Elect]. There are many different protein molecules, each of which performs a specialised function.  
2.1.2. Protein Functions
Proteins perform a huge range of functions in biological systems. In general, proteins can be classified under the following headings, according to their function. 

Enzymes

Enzymes catalyse most of the chemical reactions which occur in cells. These can be single-step reactions, or reactions requiring a long and complex sequence of reactions. Enzymes typically increase the rate at which the reactions occur by a factor of at least one million [Prot]. 

Structural Proteins


These are proteins which form structural assemblies. Such assemblies include the skeletons of cells themselves and filaments which provide mechanical support in the intracellular transportation of chemicals.
 Collagen, the most abundant vertebrate protein, is an example of a structural protein [Prot]. 

Gas Transport Proteins

Proteins such as haemoglobin bind to gaseous molecules, facilitating their transportation. Haemoglobin, which occurs in red blood cells, binds to oxygen allowing its transportation from the lungs to other tissues. It also plays a role in the transportation of carbon dioxide to the lungs.

Nutrient Molecules


These proteins are simply stores of atoms which can be used in the production of new proteins. An example is casein, found in milk, which allows a mother to pass on nutrients to her child.

Antibodies


By binding with specific particles, such as bacteria and viruses, proteins play a part in protecting the body from invasion by foreign agents. This ability to locate specific particles, especially cells, may in the near future take a central role in the emerging field of gene therapy. In the same way that the hepatitis B can enter the blood stream and target liver cells, so it looks likely that it will be possible in the future to target specific organs (or tumours, etc.) by simple injection into the bloodstream of the appropriate proteins [Tre99].
Protein Hormones


These proteins provide a control mechanism within bodies, regulating the production of chemicals. Insulin and glucagon, for example are involved in maintaining the blood sugar level within a strict range [Endoc].
Mechanical (Motor) Proteins


These are proteins which perform mechanical work. This can take a variety of forms. By changing shape on the hydrolysis of ATP, for instance, kinesin is able to move along microtubule structures in a ‘walking’ motion. Sperm cells and some bacteria cells utilise the ability of some of these proteins to move in a rotating motion, in order to propel themselves along. In muscle cells, the contraction and extension of these proteins provides the force which contributes to the overall contraction and extension of the muscle.
2.1.3. Sample Application

The sample application which will be developed using the simulation toolkit involves a member of the motor proteins, kinesin, which travels along intercellular protein structures known as microtubules. The kinesin carries out chemical transportation within the cell by towing a ball of chemicals known as a vesicle. The three components involved are described below. 

2.1.4. Microtubule

The microtubule acts as the pathway along which the kinesin ‘walks’. It is a long tubular structure made up of long rods known as protofilaments. A typical microtubule contains around thirteen protofilaments, but some can have more and some less. Each of these protofilaments is made up of a number (often large) of dimeric subunits lined up head-to-tail. These subunits are each composed of two molecules, the α-tubulin and the β-tubulin.

The microtubule performs three main functions in the chemical transportation process. The first is that it provides a solid structure on to which the kinesin protein can grip as it pulls the vesicle. The second is that it provides directionality to the movement, through an asymmetry in the structure of the subunits due to differences between the two tubulins (so kinesin will always move the same way along the microtubule). Finally the microtubule makes motion possible by catalysing the hydrolysis of ATP by kinesin. It is this reaction which causes the kinesin to make the shape changes necessary to produce the walking motion. 
Figure 1 shows a microtubule and its component parts.

Figure 1. A microtubule and its component parts.
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2.1.5. Kinesin

Kinesin is the motor protein which actually travels along the microtubule. The kinesin molecule consists of two motor domains attached to the end of a long body. It is the motor domains which bind with the microtubule, in a walking motion. Through the hydrolysis of ATP, kinesin is able to generate a force in the direction of one end of the microtubule large enough to tow the vesicle. 


2.1.6. Vesicle

The vesicle is, as mentioned before, a ball of chemicals. More specifically it is chemicals contained within a near-spherical structure formed from molecules of a chemical called clathrin. This structure holds and protects the chemicals during the transportation. The vesicle is merely a passenger in the transportation process and does not play any part in actually generating the motion.
2.2. Requirements

This section presents an overview of the features of the cellular environment which must be given consideration in the design of a protein simulation package. These features are presented under the following five categories:

· Protein shape

· Surrounding fluid 
· Inertial forces

· Interactions

· Global forces

They are examined with respect to the extent of their effect on protein systems. A simulation implementing the protein system must take into account those features which are shown to be significant.
2.2.1. Protein Shape

Shape

The shape of an individual protein is determined directly by its chemical composition. Proteins are created by synthesis from DNA, during which the chain of amino acids that form the protein are laid out linearly. There are twenty amino acids and each link in the chain can be any one of them. The exact sequence of these amino acids determines the protein’s primary structure. 

Once the chain has been formed the shape is altered in two ways. Firstly, physical interactions between adjacent amino acids cause the chain to twist. The nature of the twisting is related to the combination of amino acids and is known as the secondary structure of the protein. Secondly, every atom in the chain undergoes electrostatic interactions with every other atom in the chain, causing a shape changing process known as protein folding. The result of this process is that the protein takes on a complex three-dimensional shape, known as its tertiary structure. 

Frequently the shape of the protein is interlinked with its function. Motor proteins, for example, rely entirely on changes in their shape to produce motion. It is therefore important that a simulation of proteins is able to account for their shape. In terms of a generalised simulation, this means being able to model, or approximate, arbitrary shapes. 

Elasticity

As well as determining the shape of the protein in the absence of external forces, the protein’s chemical composition determines how it deforms when forces are applied to it. The same electrostatic and physical forces responsible for the protein’s secondary and tertiary structure produce a resistance to change in the protein shape. If a sufficiently large external force is applied to the protein then its shape will be significantly altered. If the protein chain is not broken by the force then on release the protein will return to its original shape. If the protein can undergo such forces (as might occur in simulations of muscles) then the simulation must be able to represent deformations and subsequent returns to form, as well as chain breaks. 

2.2.2. Surrounding fluid

In general when simulating proteins we will be concerned not with studying how they behave in a vacuum, but rather how they behave in their natural environment, cells. Within cells, proteins are suspended in a liquid primarily consisting of water molecules (though other chemicals are present). The fluid has two properties which have an effect on the protein, temperature and viscosity.

At the molecular level temperature is a measure of the kinetic energy associated with each molecule. This kinetic energy once applied causes the molecules to move in a straight line at constant velocity in accordance with Newton’s first law. However, the distances between molecules are very small and the velocities of the molecules are very high (640 m/s for a water molecule at 25°C). As a result the molecules take part in a huge number of collisions which has the effect of randomising the motion of the particles over the time-steps involved in most protein simulations. 

This randomising effect has an important consequence for the simulated proteins. A protein placed in a liquid will be rapidly bombarded on all sides by the surrounding molecules causing it to move under what is know as Brownian motion (after its discoverer - though it was Einstein who first explained its molecular mechanism). The effect of Brownian motion is to cause a particle to diffuse from its starting position along a random walk in three-dimensions. The displacements due to Brownian motion are sufficiently large to be a necessary consideration in any realistic protein simulation. 

The second fluid property, viscosity, comes into effect whenever the protein moves in the fluid. The presence of surrounding molecules causes a resistance to the protein’s movement. The molecular basis of viscosity in liquids is not well understood (although Howard has proposed an explanation in terms of inter-molecular bonding [How01]). Despite this it is still possible to accurately incorporate viscosity into a protein simulation, since the drag force due to viscosity is well known (given by Stokes’ law). This is fortunate, because the magnitude of drag forces on proteins in aqueous solutions is sufficient large to affect the simulation and must therefore be taken into account. 

2.2.3. Inertial Forces

As discussed above Newton’s first law dictates that a body in motion will continue at a constant velocity unless external forces are applied. In macro-level simulations this is an important factor in the future positions of the simulation objects. On the surface it might appear that protein simulations must similarly calculate the momentum of the proteins in order to calculate their positions after each time-step. However it has been shown ([How01]) that for an average sized (100KDa) protein in an aqueous solution the momentum of the protein will only have effect for ~3 picoseconds (=3 x 10-12 seconds) before it is randomised by Brownian motion. During this time the protein will only have moved about 1/300th of its diameter. In general protein simulations will have time-steps significantly longer than this, so inertial displacement can be safely ignored.

There is another type of force, centrifugal, which can have an effect at the protein level. It is possible to induce an average speed of ~3μm/s (= 3 x 10-6 m/s) on a protein. However this requires artificial centrifuges and is not indicative of the types of force found naturally in cells. As such the simulation package developed will not consider centrifugal forces.

2.2.4. Interactions

When considering simulations containing more than one protein, or containing other chemicals, it is necessary to consider the interactions which occur between them. There are two distinct types of interaction to be considered, electrostatic and collisional. 

Electrostatic interactions occur between charged molecules. They produce a force on each of the molecules which results in an attraction or repulsion between them. Interactions can also occur within a molecule (as is the case in protein folding) and will need to be modelled in any simulation that represents the proteins as a composition of sub-components. The magnitude of these forces can be large enough to be significant at the protein level and should therefore be accounted for by a general protein simulation toolkit.

Electrostatic interactions have another effect. When the interacting components get with in a certain distance of each other new bonds can be formed. As well as functionally connecting the interacting particles, conformational (shape) changes may also take place within the individual particles. This occurs in many chemical reactions. For instance, the operation of motor proteins is dependant on the conformational changes induced by bonds formed with ATP. To reproduce the sort of behaviour exhibited by motor proteins (and others) it is necessary for the simulation package to represent the effects of these interactions.

The other form of interaction is spatial, rather than electrostatic. Collisional interactions occur when two proteins (or other chemical) attempt to occupy the same space. In general this will not be possible and so the position of one or both of them must be constrained to prevent interpenetration. The solution of collisions in macro-level physical systems (billiard balls being the classic example) is a well understood, but complex problem requiring determination of exact changes in inertia for arbitrary surface collisions. Fortunately, as seen above, inertial effects are negligible in cellular level systems due to Brownian motion. The result of this is that it is sufficient for a protein simulation package to prevent interpenetration of particles without needing to compute the resulting momentums.
2.2.5. Global Forces

There are two types of force which have not yet been covered, but are worth a mention. These are gravitational and magnetic forces. 

Gravity produces acceleration on all massive objects, and like all physical objects proteins have mass. The magnitude of acceleration is given (in Newtonian physics) by the equation F = ma. Evaluating it for an average 100KDa protein gives a gravitational force of only 1.6 x 10-9 N, which is too small to have a noticeable effect over Brownian motion in realistic protein simulation time-steps [How01].

Magnetic forces only affect molecular-level particles very weakly. Even the strongest artificial magnetic fields are too weak to be noticed over Brownian motion. It is therefore unnecessary to include such forces in a protein-level simulation.

2.3. Summary

This section has set the scene for a protein simulation package. It has presented the background to both proteins in general and the sample application in particular. 

Furthermore, it has identified the aspects of the cellular environment which will have a significant bearing on the simulation: protein shape and elasticity, Brownian motion and viscosity, and electrostatic and collisional interactions. 

In doing so, several assumptions have been made. Firstly there has been an assumed minimal time-step for proteins, which is made to reduce the complexity of the simulations by removing the need for inertial calculations. This assumption is reasonable as long as the behaviour of interest occurs over a period sufficiently longer than the minimal time-step. 

A second assumption is that the simulation package does not need to deal with extreme (i.e. artificial) conditions such as that of an imposed centrifuge. Also by the exclusion of inertia from the system it would not be possible to realistically model protein collisions in, for instance, a vacuum. This assumption is reasonable if the use of the package does not extend to the consideration highly artificial systems where the conditions bear little resemblance to normal cellular conditions. 

In the next section a design will be put forward for a generalised protein simulator which is capable of modelling the aspects identified as important in this section.
3. System Design

3.1. Introduction

In this section a conceptual design is put forward for a method of describing and solving protein systems. The design consists of three main components:

· A set of primitives for describing the initial configuration of the system 
· An object-oriented framework to facilitate rapid simulation development

· A sequences of operations to compute the system’s evolution over time

The components will be presented in the context of the conceptual problems they have been introduced to solve and, where appropriate, will be evaluated relative to rival solutions. 

3.2. Primitives
Any generalised simulation package must provide a set of elementary primitives which can be combined to describe the system being simulated. These primitives must be capable of fully representing the desired behaviour of the system. In the last section the desired behaviour of a protein simulator was identified as being a combination of the physical form of the proteins, the interactions between (and within) proteins and the nature of the surrounding fluid. The first two of these are dealt with here. The last of these, being a property of the whole system and not of individual entities, is deferred until the discussion of the system evolution operations. 

3.3. Physical form

The three dimensional structure of proteins can be arbitrarily complex. As identified in the previous section, this structure can be of significant importance in the functioning of the protein. It is therefore essential that a simulator is capable of capturing the essential details of this form. The following four solutions are considered:

· Atomic level models

· Amino acid abstraction models

· Surface models

· Spherical abstraction models

Figure 2 illustrates each of these techniques, showing the abstraction of a rigid section of a protein. Note that each image is for illustration only and does not constitute an accurate representation.

Figure 2. Four models of a protein section


[image: image2]
The first, atomic level modelling, involves storing and updating the positions of every atom in the protein. While, with sufficient computational power it would be possible to use this method on a single protein, the consideration of large multi-protein systems is not feasible with current technology. 

A reduction can be made in the complexity of protein representations by observing that all proteins are formed from chains of amino acids. However, abstraction at this level has several drawbacks. Firstly, the number of amino-acids in a protein is still large and may limit the computational feasibility of larger systems (i.e. the model is not scalable). Secondly, effort is wasted calculating the evolution of sections of the protein which may be known have no bearing on the outcome of the simulation. Thirdly, construction of the models may be difficult as large quantities of data (on amino acid locations and orientations) are required and may not be available. Finally, using amino acids as the basic primitive prevents the representation of other (non-amino acid based) chemicals.

A different way to tackle the problem is to approximate the surface of the protein and represent is using a mesh of polygons. This has the advantage that arbitrary levels of detail can be described. However, modelling the evolution of irregular surfaces is computationally complex, with particular effort required to calculate drag forces and collisions.

Yet another way to represent the form of a protein is to identify sections which are not changed during the interactions being simulated (every section of the protein remains inactive at some level of detail). These sections can then be abstracted using simple geometric shapes. By connecting these sections together the entire protein can be constructed. The use of simple geometric shapes simplifies the calculations of drag and collisions to some extent, but this can be improved on. The next section presents the form representation put forward for the design. It constitutes a refinement of this modelling method, which uses only spheres in the representation.

3.3.1. Spherical Abstraction

When approximating sections of a protein it seems sensible that it should be done with geometric shapes which are close representations of the section, for instance a long strand in a protein could be approximated by a cylinder. This section will show that a simpler and more efficient solution can be reached by the use of spheres. 

Non-spherical shapes have inefficient implementations in the following areas:

· Drag force calculations

· Collision detection 
· Orientation calculation

For each of these areas the problems arising from the use of non-spherical shapes will be discussed. The way in which spheres solve these problems will also be shown.

Drag, as discussed previously, is the resistance to movement due to the surrounding medium. Drag on an object is related to the projected area of that object in the direction of movement. Non-spherical shapes have a different projected area depending on their orientation and the direction of movement. Calculations typically involve computing this area at each step of the simulation and from that calculating the drag on an equivalent sphere (one with the same projected area). Using spherical shaped as the basic unit reduces this problem significantly. Spheres have the same projected area from all directions, allowing a significant proportion of the drag calculation to be pre-computed.  As well as being more computationally efficient, the spherical drag calculation is also easier to implement.

Collision detection is necessary in any protein system where particles which could come into contact are not allowed to interpenetrate. In non-spherical systems this is enforced by calculating intersections between objects on the basis of their geometry. As each shape has a unique geometry, they will typically require a unique implementation. There is a great deal of literature on the solution of such calculations, but none match the efficiency and simplicity of the equivalent spherical solution. Using spheres it is sufficient to compute the distance between the two objects and compare it to the sum of the objects’ radii. 

The configuration of objects in a system is uniquely specified by the objects’ positions and orientations. In order to store an object it is therefore necessary to store the object’s position, an axis along which the object lies and its rotation about that axis. Each of these quantities must be updated at each time-step, which results in a high computational load. This load can be reduced by limiting the system to spheres, which do not require the orientation to be represented since they have full three-dimensional rotational symmetry.

Two additional points concerning the use of a sphere-only representation of proteins remain. Firstly, the sections of the protein which are inactive and can be abstracted are not necessarily going to be spherical. However, any 3D shape can be approximated to any degree of accuracy by multiple (possibly overlapping) spheres. A requirement for this is that the spheres can be rigidly connected together. In the next section such a mechanism is introduced into the design. 

The second point concerns elasticity. In the simulation requirements section the ability to model the elasticity of molecules was identified as being a potentially important characteristic of the system. This ability seems on the surface to have been compromised by the use of rigid bodies (i.e. immutable spheres connected rigidly). This is not in fact the case and as will be seen in the next section this behaviour can be implemented through the use of multiple spheres connected not with rigid links, but with hinged joints.

3.4. Interactions

The last section presented a method of abstracting protein forms based entirely on spheres. It also briefly introduced the idea of connections between these spheres as a method of composing larger objects. This section looks in detail at these and other connections which, when combined with the spheres, form the set of primitives capable of describing any given simulation system at any given moment. These connections encode:

· Rigid connections

· Hinged joints

· Electrostatic interactions

· Collision prevention

Each is treated in its own section explaining its function and how it can be applied to implement the required protein behaviour.

3.4.1. Rigid Connections

Rigid connections allow spheres to be combined into larger structures. A rigid connection is an association between two spheres which ensures that their centres remain a fixed distance apart. It is sufficient to specify their separation distance since, as mentioned before, the spheres’ rotational symmetries remove the need to consider their orientation. Figure 3 shows a structure created using rigid connections.

Figure 3. A structure formed with from four spheres connected rigidly
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This lack of orientation leads to a subtle issue concerning the construction of structures with more than two connected spheres. If orientation is specified then connecting a third sphere to either one of a pair of connected spheres would enforce rigidity between all three. However, without orientation the third sphere would be able to move relative to the sphere it is not connected to. Imposing rigidity in this case would involve the addition of a third rigid connection between these two spheres. In some cases it will be necessary to introduce extra connections into protein definitions to ensure rigidity.

As well as specifying the internal structure of proteins, rigid connections will be used to represent the existence of bonds between proteins and other chemicals.

3.4.2. Hinged Joints

Hinged joints are connections involving three spheres. One of the spheres acts as the centre of the hinge and the others experience a force in the direction of the hinge’s rest angle. Hinged joints allow the construction of proteins which, while non-rigid, have a rest state which will be returned to in the absence of external forces. This behaviour is characteristic of proteins, which are constructed in a strained position (a straight chain) and then released to find their equilibrium. 

Consider for instance a system of four spheres in balance. If any one of the spheres is moved out of balance by an external force then a force is generated, by the hinges, which acts in the opposite direction (i.e. towards the balance state). When the external force is released the presence of the force from the hinges restores the system to balance (note, however that the system will have moved in the direction of the applied force, as would be expected. 

Figure 4 shows two hinges, one at rest and one not.

Figure 4. Two hinges
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3.4.3. Electrostatic Interactions

The simulation requirements section identified the need to model electrostatic interactions. An electrostatic interaction is modelled as a link between two spheres (each of which is assigned a charge) which signifies that after each time-step the two particles should be displaced in accordance with the force between them (computed from the charges and the distance). The details of the calculation will be presented in the section on system evolution operations.

Figure 5 shows the electrostatic interaction between two particles. The forces between them are indicated by arrows, whose sizes reflect the magnitude of the forces.

Figure 5. Three stages of an electrostatic interaction between two particles
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3.4.4. Collision Prevention

In protein simulations there is frequently the possibility that two proteins could attempt to occupy the same space. In order to prevent this it is necessary to provide a mechanism for specifying any sections which are not allowed to pass through one another. This is done with the use of a collision link. The link is formed between two spheres and constrains their motion so that their centres do not come closer than the sum of their radii. 

A method of simplifying the design of simulations would be to have collisions implicit between all objects in the system. This will not be used in this design for two reasons. Firstly, if sections of the simulation are known to incapable of coming into contact then there is no need to specify collisions between them, reducing the computational load. Secondly, in some cases it will be desirable to have interpenetrating objects when constructing structures, as this could increase the accuracy of approximations to the protein form.

Figure 6 shows a collision between two particles, indicating the new positions the particles attempt to move to, and where they actually end up as a result of the collision.

Figure 6. A collision involving two particles
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3.5. Primitives Summary

Now that all the primitives have been presented it is time to take a step back and review this section of the design. 

The set of components developed to describe protein simulations now contains one unit for physical descriptions:

· The sphere

It also contains four components to describe the interaction of these spheres:

· Rigid connections

· Hinged joints

· Electrostatic interactions

· Collision prevention

The next section discusses an framework which allows these components to be combined into dynamic objects from which simulations can be rapidly developed.

3.6. Object-Oriented Framework
3.6.1. Introduction

The primitives described in the previous section allow the state of the system at any given moment to be specified. There are two desirable features of a simulation system which are not covered by these primitives alone. 

Firstly, the primitives do not permit dynamic simulations. If a bond is represented with a rigid link at the start of the system then there is no way for that bond to be broken during the simulation. Clearly bonds can be broken in real protein systems. 

Secondly, there will be a large number of these primitives in any sizable simulation and specifying them all would involve unnecessary effort on the part of the designer.

This section presents a framework which addresses these problems by providing a mechanism for rapid development of dynamic simulations. The framework is presented in the following sections

· Particles 
· Particle templates

· Objects

· Object templates

3.6.2. Particles

In the framework the spheres used to build the physical system are coupled with properties of the matter they represent and referred to as particles. Each particle has a radius specifying the size of the sphere it implements. Other properties of the particles are their colour and their charge (used for calculating the force on particles with electrostatic links). 

One thing that is absent from the particle properties is the mass of the particle. As the abstraction level of this design does not model inertial motion (as discussed), there is no need to store the mass. 

Another aspect of particles is that they have a number of possible states of which they occupy only one at a time. The particles properties remain unchanged between states, but the presence of states is used when determining the formation of new connections (for instance a particle might only be able to form a bond if it is not already in a bond). This is properly detailed in the section on objects.

Figure 7shows three example particles.

Figure 7. Three example particles
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3.6.3. Particle Templates

If multiple copies of the same, or similar, proteins are to be modelled then there is a likelihood of many identical particles being used in the system. An improvement to the design is therefore to have particle templates which produce multiple copies of a single particle type.

Each template consists of an entry for each of the properties of a single particle and a list of particles which are members of the class defined by the template. The templates also have a method allowing the creation of new particles. When it is called, a particle is initialised with the properties of its template and is added to its member list.

Figure 8 shows an example particle template.

Figure 8. A particle template
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3.6.4. Objects

The design now consists of the components needed to create static representations. In this section the transition to dynamic representations will be made. Before this can be done, there is an important step to be taken. While it is possible to build proteins and other objects by the composition of the primitives, the objects themselves are not logical entities but a set of distinct components. Rectifying this situation will pave the way to the creation of objects which can alter dynamically during the simulation.

This discussion of objects will begin by considering static, single-level objects. It will then move on to hierarchies of objects, before introducing dynamic objects capable of changing function during the simulation.

3.6.5. Static, Single-Level Objects

Objects taken at the simplest level are just a collection of particles and connections between those particles. As well as maintaining a record of which particles and connections they contain, they also have methods for adding new objects and connections. 

Figure 9 shows a static, single-level object.

Figure 9.  A static, single-level object
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3.6.6. Static, Hierarchical Objects

The single-level objects of the kind just described are useful in small simulations; however in large simulations it may well be desirable to group objects at multiple levels, to reflect the objects’ internal structure. An example of this would be to have a microtubule object composed of protofilament objects, themselves composed of αβ-tubulins (this structure is found in the sample application for this project)..

This is handled by extending the single-level model to allow objects to contain instances of other objects. The main object is also given access to the particles in the sub-objects allowing it to form connections between objects. 

A point to note at this stage is that, at the start of the simulation, the design does not allow connections between two objects unless they are both contained by another object. This simplifies the implementation as only particles defined by the object need to be checked for existence. Connections between objects can be formed during the simulation, however, as detailed in the next section. The restriction on connections at the start of the simulation does not actually limit in any way since, if a connection between two objects is required, a container object can be created to contain the two objects and the connection. 

Figure 10 shows a static, hierarchical object.

Figure 10. A static, hierarchical object
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3.6.7. Dynamic objects
While the static model presented so far is powerful enough to create a description of the protein system at any given point in time, it is not powerful enough to represent the state of the system over a period of time. This is because the connections between the particles will change over time; bonds will be created, protein conformations (the shape as defined by the hinges and rigid connections) will change, etc. If this design is to be a useful paradigm for the simulation of protein systems then it must include a mechanism for handling dynamic aspects of systems. Such a mechanism is presented here in three parts:

· A state-based object design

· A state change mechanism

· Particle group oriented connections

The first thing needed for dynamic objects is the notion of a set of states. This can be easily achieved by giving the object multiple sets of connections, only one of which is active at any one time.

This on its own is of little use. Instead it must be combined with the second part, a mechanism for detecting and executing state changes. The mechanism by which this is achieved in this design is simple yet expressive. Each state that the object can occupy can be associated with sets of conditions and a list of states to change to if the corresponding conditions are met. From this set up the logical AND of conditions can be performed by placing the conditions in the same set and the logical OR by placing them in different sets. 

A question then arises over what these conditions should be. The design theoretically permits any condition based on the system or otherwise which can be expressed programmatically. The design currently recognises two types of condition, though this can be extended as necessary. 

The first condition is a measure of distance. It has two configurations, ‘greater than’ and ‘less than’ (note that ‘equal’ is not used as the system will generally be implemented using floating-point precision or higher, where the probability of any exact value occurring is extremely small). Each configuration is given a value for the distance and two particles to compare. If the relationship is satisfied then the condition is triggered and the state change can occur (as long as all other conditions in the set are met). This type of condition can be used for a number of purposes, one of the most obvious being the formation of bonds which occurs when the interacting particles come within a certain distance of one another.

The second type of condition models probabilities. It is initialised with a probability of being triggered in a given unit of time. A random variable is then evaluated at each time-step using the probability (adjusted to fit the time-step), if the random variable is within the range defined by the probability then the condition is deemed to have been met (and will remain so until the state is changed). This type of condition is again useful in a number of situations, an example being the degradation of bonds (where bonds have a certain probability of breaking apart). 

At this stage there is a sufficiently powerful mechanism in place to describe complex dynamic protein behaviours. There is one refinement that can now be made to the design which increases the ease of use and speed of simulation development. In some simulations there may be a large number of particles of the same class which can bond with a given particle. Attempting to define an individual set of conditions to describe each possible bonding event is unnecessary effort. 

This effort can be reduced by defining particle groups, each of which consists of a set of particle templates and a current particle (a member of one of the templates). Each of the connections mentioned previously is instantiated with particle groups (instead of single particles) and can use the current particle for each group.

The conditions for state changes are also instantiated with particle groups and, when the condition is evaluated, each member of each group is checked against the condition. If no member of the group meets the condition then the entire set of conditions is deemed to have failed and the next set is tested. Otherwise, if particles that meet the condition are found then the one that best meets it (as defined by the condition, e.g. closest for ‘less than’) is set to the current particle for the group. The next condition in the set is then tested. If every condition in the set succeeds then the object changes to the state associated with that set of conditions. Construction of bonds for the new state may then make use of the current particles set in the particle groups during the condition testing.

As an example of the mechanism, consider the following. A particle, P, in an object must be able to bond with particles in a particle group, Pg. The bond can only form if the particle is within a distance of one unit. So the object containing P must have a set of conditions for its current state. This condition set will contain one condition, which will be test the distance from P to each member of Pg. If no member of Pg is within one unit then the test fails and there is no state change. If, however, the state succeeds then the particle in Pg nearest to P will be set as the current particle for Pg, and the set of conditions will succeed. This will cause a move into a new state. Now one of the bonds in the new state should be set to connect P to Pg. When this state is evaluated, P will be connected to the current particle in Pg, as required. 

The design presented so far now contains everything necessary to describe arbitrarily complex, dynamic simulations of proteins systems. Before moving on to look at a sequence of operations for evaluating the simulation at each time-step, one more mechanism in the object-oriented framework will be presented. 
Figure 11 shows a dynamic object.

3.6.8. Object Templates

The design framework already features an object-oriented method of particle creation. An obvious improvement to the design is to extend the scope of the object-orientation to include object templates.

The object templates incorporated in the design are similar in mechanism to the particle templates. First, the object template is defined by setting the particles (specified by their templates) and the connections and state changes for each state (specified in terms of particle groups, as discussed above). Then instances of the object are created via a method call. Each object created by a template is given a unique set of particles, by creating instances of the particle templates.

With this mechanism in place it possible to define an object template once and then create multiple copies of the object. This allows rapid development of systems involving multiple copies of the same object.

Figure 11. A dynamic object
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3.6.9. Framework Summary

This section has introduced a framework for the rapid creation of complex, dynamic particle systems. This has been achieved through the introduction of a number of concepts:

· Particles - spheres with properties such as charge, used to represent the physical protein.

· Particle templates - generators of identical particles.

· Objects - recursive collections of particles, connections and sub-objects, representing logical objects in the system, e.g. proteins.

· Object states - a set of configurations of an object, of which it can occupy only one at a time.

· Object state changes - conditions evaluated at each time-step which trigger state changes.

· Object templates - generators of identical objects.

The framework presented here, along with the primitives on which it is founded allows the complete specification of the configuration of protein systems. The next section will put forward a sequence of operations which allow the evolution of these protein systems over time to be evaluated. Once this has been shown the design will be complete and ready for implementation.

3.7. System Evolution Operations

3.7.1. Introduction

The previous two sections have developed a mechanism for describing the initial and future configurations of biological systems. They do not, however, specify a mechanism for computing the positions of the particles within these systems. Without knowledge of the positions of particles, it is not possible to determine which of the possible system configurations will be the next to occur. Furthermore, without knowledge of the particles’ locations, it would not be possible to display the simulation visually in any meaningful way. 

The aim of this section is to present a sequence of operations from which the changes to the system configuration and particle positions after each time-step can be computed. There are six calculations involved in the solution presented:

· Brownian displacement

· Electrostatic displacement

· Hinge displacement

· Collision limitation

· Iterative connection enforcement

· State change calculation

These will be considered in turn, but before that the underlying methodology will be explained and examined against the main alternative.

3.7.2. Methodologies

There are two main methods of solving multiple particle systems and their underlying methodologies differ significantly. The first method is to solve to system globally, the second is to solve it locally.

Solving systems globally involves representing particles as a system of equations which can be solved simultaneously. The equations being solved generally represent constraints on the position of particles, such as those introduced by the use of rigid connections described in the primitives section. Kalra ([Kal95]) proposes just such a system of equations for the solution of articulated (i.e. jointed) systems. There are two main problems with such systems with respect to their usefulness in protein system calculations.

The first problem is that solution of these equations does not necessarily produce a single set of possible particle positions. Any implementation of the system would therefore need a method of selecting between possible choices and, less tractably, handling the case when there is no solution at all. 
The second problem is that such global solutions rely on carefully designed set-ups to ensure non-interpenetration (collisions). In the systems specified by Kalra, the positioning of objects and the constraints on them makes it impossible for them to collide. However, such artificial design can not be applied to protein systems if they are to remain realistic. To continue using a system of equations solution it would, therefore, be necessary to form equations to constrain the collisions, in the same way that the connections are. Collisions would need to be represented not by equations, but by inequations (e.g. the separation between two particles is greater than the sum of their radii). The complexity of solving such a system of inequations (should such a solution exist) would grow with the square of the number of particles able to collide and each variable would be capable of having multiple interval ranges (e.g. x = {1-3, 10, 13-20}). The result is that the size of possible simulations would be limited and the system scalability would be poor.

The alternative methodology, presented in this design, is object-oriented. That is, each particle in the system is responsible for computing its future position, taking into account the positions and properties of neighbouring particles. Other than the reasons mentioned, there are other reasons for favouring this method over the global solution.

Firstly, the design is more suited to the object-oriented framework developed in the previous section. This simplifies the implementation of the methodology by allowing the smooth integration of the objects and their controlling code.

Secondly, the system presented by Kalra is not compatible with the design simplifications made in the previous sections. The presented system of equations is based on inertial systems and describes constraints on acceleration and velocity. As neither is used by this design, the system of equations would have to be fully rewritten (and the collision problem would still remain).

It is with these issues in mind that this design proposes the use of an object-oriented methodology. In general it will not be possible to produce an exact solution for the particle positions as it is not computationally feasible to account for every interaction and collision affecting the particles. Instead the particle positions will be approximated across the time-step. The sequence of operations proposed will now be presented, with the approximations made by each operation being explained.

3.7.3. Brownian Displacement

There are two stages in the solution of the system using the method outlined in this section. The first stage is to compute the ideal (i.e. unrestricted) displacement of a particle from the forces acting on it. The second stage is to correct this displacement with respect to constraints imposed on the system. There are three factors contributing to the ideal displacement of particles. The first of these is Brownian motion.

Brownian motion is the movement of particles due to thermal energy present in the system. A particle undergoing Brownian motion is moved by the constant application of randomly directed forces caused by collisions with the surrounding molecules. The random nature of these forces means that it is not possible to find a single solution to the resulting displacement of the particle. Instead a simulation of a system under Brownian motion must create a random sequence of displacements over a given time-step which has the same statistical properties as true Brownian motion observed over the same time-step. This motion, known as a ‘random walk’ is shown in figure 12.
Figure 12. A particle moving under Brownian motion.
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It is possible to derive and solve a statistically accurate expression for the instantaneous force on a particle due to Brownian motion. This is not, however, of use in calculating the displacement over time-steps of the order required by protein simulations. This is because the instantaneous force acts for only a very short time period before it is randomised by further collisions. As a result any displacement calculation based solely on the instantaneous force would significantly over-estimate the particles motion in a given direction.

A different approach is to derive a statistically accurate expression for the displacement of the particle directly, without reference to the forces causing it. Such a derivation is performed in Appendix A, and yields the following equation:

xrms = √(tkT/3πrη)
This gives the average displacement in each direction over a given time-step (t). The equation takes into account the particle’s radius (r) and the temperature (T) and viscosity (η) of the surrounding fluid. (k) is Boltzmann’s constant.

To get actual displacements for use in the simulation it is necessary to multiply this average by a Gaussian distributed random variable with a standard deviation of 1.

A point to note is that the drag on the particle due to the viscosity of the particle is taken into account in the above equation.

So the first step in the solution of the system is to calculate the displacement of each particle due to Brownian motion (in three-dimensions), using the above expression.

3.7.4. Electrostatic Displacement

The ideal displacement of a particle is also affected by any electrostatic interactions in which the particle takes place. 

The electrostatic force between two particles is given by the following relationship:


F = (ε0 x Q1 x Q2) / d2 

In the above expression Q1 and Q2 are the charges on the particles, d is the distance between them and ε0 is the electric constant. 

The electrostatic force is also an instantaneous force based on the instantaneous positions of the two particles. It is not strictly accurate to calculate the displacement over a time-step using the instantaneous force as the positions of the particles will change within that time-step. In non-Brownian systems it would be possible to perform integration across the time-step and compute the displacement due to the electrostatic force exactly. This is not possible in Brownian systems as the displacement of the particle is affected by Brownian motion within the time-step and the displacements produced by Brownian motion are nowhere differentiable, so no exact answer can be found. A possible method of improving on the calculation from the instantaneous force would be to sub-sample the position across the time-step. As this method effectively amounts to nothing more than decreasing the time-step, it does not add anything to the existing instantaneous force calculation. 

With instantaneous force we can calculate the drag-corrected displacement of the particle using the following equation (by Ermak and McCammon, see [McCam]):


x = Ft / 6πrη
Here, x is the displacement over the time step and F is the instantaneous electrostatic force. As before t = time-step, r = radius of the particle being displaced and η = viscosity of the surrounding fluid. Note that if a particle A exerts a force, F, on a particle B then particle B exerts a force of -F on particle A.

The second step in the solution of the system is therefore to calculate the displacement of the particles, due to electrostatic forces, using the two equations given.

3.7.5. Hinge Displacement

The final component of the ideal displacement is provided by hinges.  Hinges, as described in the primitives section, act to move two particles with respect to a common centre. The hinges which will be considered in the current version of the design (a more sophisticated version could be implemented in the future) close with a constant force (or open if the force is negative). 

In reality hinges apply a torque to the hinged objects, not a force. A torque is a rotational force which has the effect of rotating the hinged objects about the hinge centre. This design approximates this for simplicity. The approximation involves moving the particles linearly (through the application of a force perpendicular to the hinge centre). This has the effect of moving each hinged particle round the hinged object as desired, but also moving it away from the hinge centre. This error is resolved by considering each hinged particle and the hinge centre particle to be connected by a rigid connection the length of their starting separation. Then when these are enforced (see the section on iterative connection enforcement) the hinged particle is returned to the correct distance from the centre. Figure 13 illustrates this mechanism.

The linear force with which the hinge closes is user-specified, but its direction must be computed. Only once this has done can the displacement be calculated.

The direction of the linear force on a hinged particle can be computed with only two applications of the cross product. Consider a hinge system consisting of a centre particle with centre, C, and two hinged particle with centres, A and B. Let a be the vector between C and A and let b be the vector between C and B. The direction of the force on particle A is then at 90 degrees to vector a and co-planar with a and b. 

Figure 13. The hinge approximation
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The first application of the cross product is to find a vector normal to the plane containing a and b. This is done as follows:


n = b x a
Note that the order of b then a is chosen to ensure that a positive force will close the hinge and a negative force will open it.

A vector in the direction of the force (call it u) is now computed from n and a, which are both perpendicular to u and are mutually perpendicular:


u = a x n
The vector u lies in the direction of the force on A. The magnitude of this vector can then be adjusted to give the true force vector. 
As with the electrostatic force, the force from hinges can be calculated using the equation due to Ermak and McCammon (i.e. x = Ft / 6πrη).

Adding the displacement calculated in this fashion to the electrostatic and Brownian displacements gives the final, ideal displacement. The next two sub-sections will show how this displacement can be corrected to fit the constraints imposed on the system.

3.7.6. Collision Limitation
One of the major problems associated with time-stepped simulations is that events which occur faster than the sample rate can be missed. In the case of simulations involving moving particles it is possible that one particle might pass through another within the space of one time-step. Consider, for instance, the case where a particle is on one side of an impassable barrier. If a particle on the other side of the wall exerted a large enough electrostatic force on the first particle then its new displacement would place it on the other side of the wall - clearly incorrect behaviour. 

In order to prevent such occurrences this step of the calculations is concerned with restricting the movement of the particles. It does so by calculating the distance a particle can move (towards its ideal displacement) before it collides with another object. If this object prevents the particle from reaching its ideal displacement then is only moved as far as the point of first collision.

This point of first collision in reality represents the first point on the line of motion at which the distance between the moving particle and the colliding particle is equal to the sum of their radii. In practice, however, it can be computed more easily by calculating the point at which a sphere with a radius equal to that of the two particles first intersects the line. The distinction between these two objects is shown in figure 14.
This calculation is performed on all the particles with which the moving particle can collide and the nearest one is the one that limits the motion (unless the ideal displacement can be reached).

There is a remaining issue to be dealt with in the application of this step. It is not initially clear at which point the step should be implemented. One possibility would be to move each particle, evaluating it against the particle positions at the start of the time-step. However, this method misses some cases of objects passing through one another. Consider, for example, two particles ten units apart. If the calculated displacement for each is eight units in the direction of the other and they are both evaluated on the start conditions then both will be allowed to move the full eight units and will cross over. 

Figure 14. Two equivalent views of the point of first collision
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An alternative is to calculate all the final positions using the ideal displacement and then check each particle in turn for collisions. Consider the above particles under this scheme. Firstly, the ideal positions would be calculated, which would have them crossed over with a gap of six units between them. Then when the collision limited position of each was calculated the displacement would be limited by the ideal positions and the particles would be left more than six units apart (six units plus the twice sum of their radii). This model, while preventing crossovers, is clearly unrealistic.

The ideal solution would be to compute all of the movements at the same time and attempt to anticipate the moment at which the moving objects collide. However, this solution is both complex and computationally expensive, neither of which make it desirable. 

As a compromise, therefore, the following solution is proposed. Each particle is moved in turn, as far as possible before the motion is limited by a collision. On any one round of calculations this will introduce a bias in the system. For example, particles evaluated later will tend to have more freedom of motion since the new positions will tend to be more widely diffused than the old ones (the new ones have not yet been fully constrained). In order to minimise this, the order in which the particles are evaluated will be randomised at each round. While a particle at any given time may have more or less freedom than it would in the real system, over a number of frames this will average to something approaching a realistic value. 

There is another aspect of the system which deserves a mention. When a particle under constant force (electrostatic or hinge) collides with another it would tend to push that particle out of the way. This occurs not by giving the pushed particle any constant momentum (as inertia is rapidly randomised), but biasing the direction of Brownian motion on the object. While the design presented here does not encode this behaviour, an approximation to it occurs as a result of the progressive evaluation of particles. Consider, in one dimension, a particle P being pushed by a particle E, with E being subject to a constant electrostatic force in the direction of P. Let the particles start in contact, with E on the left and P on the right. At each stage the ideal displacement is computed. For P this will result in a ideal move either left or right (randomly). For E, if the electrostatic force is strong enough, this will always be to the right. It is clear that P will always be collision limited if it tries to move further left than E’s current position, it can, however, move right. If P moves right then E can also move right, limiting P’s return to the left. In this way the bias on the direction of Brownian motion is achieved. 

This step, as has been seen, proposes that particles are, in a random order, moved as close to their ideal displacement as possible, but halted when a collision occurs.
3.7.7. Iterative Connection Enforcement

One final step is required before the calculation of the particle positions is complete. Particle separation constraints on the system due to rigid connections will have almost certainly been violated by the application of the new displacements. A process is required which will restore the constraints to the system. 

From the point of view of accuracy of the system, each constraint which has been violated has introduced a source of error into the system. It is not necessarily possible to fully correct the error by correcting the error on one particle at a time, for two reasons. Firstly, the particle may be subject to several constraints at a time and it may not be possible for all of them to be satisfied by moving that particle alone. Secondly, even if the error is corrected on that particle, it may prevent the particles to which it is connected from fulfilling all their constraints. 

The solution proposed by this design is slightly more subtle. As with the above method, each particle is treated in turn, however, in this method the error is not entirely eliminated, but merely reduced. This is done over multiple iterations over the system, each one bringing the system closer to fulfilling all of its constraints. 

The method by which the error is reduced is quite straight forward. For each constraint a particle is involved in, it moves itself closer to the closest position in which it can fulfill that constraint. It does not move directly to that point as this can unbalance other constraints on the particle. Instead it calculates its contribution to the connection, based on its radius and that of the other particle involved. This accounts for the fact that smaller particles are likely to have moved further from the constraint, since they incur less drag. This contribution is multiplied by the distance to the constraint satisfying point. Moving the particle by this amount would have the effect of implementing the first system of removing the constraint entirely. Rather than do this, this amount is multiplied by some factor with a value of less than one. This causes the error to be reduced by successive iterations. 

While the particles were collision limited by the previous stage (i.e. all collisions were prevented), it is not necessarily the case that they will have been preserved by this stage. This is simply dealt with collisions in the same way as connections when the objects are too close (by moving them away from each other) and doing nothing when they are not colliding.

At the end of this stage all the particles in the system will have been repositioned in accordance with the constraints on them. 

3.7.8. State Change Calculation

Now that the particles have been correctly repositioned, all that is left to complete the time-step is to evaluate the state change conditions to determine whether a new state is entered. The mechanism for this has already been described in the section on the object-oriented framework. 

3.7.9. Operations Summary

This section has presented a sequence of operations which, evaluated in order, will advance the time-step of the system by one frame. The operations presented where:

· Brownian displacement - calculates random diffusion of particles

· Electrostatic displacement - calculates the effects of electrostatic interactions

· Hinge displacement - evaluates displacement of particles by hinges

· Collision limitation - moves particles by the displacements calculated to avoid collisions

· Iterative connection enforcement - ensures constraints are met by iteratively reducing the error in the system.

· State change calculation - updates the states of objects based on the new particle configuration

3.8. Summary

A conceptual design has put forward for a method of describing and solving protein systems. The design consists of three main components:

· A set of primitives for describing the initial configuration of the system 
· An object-oriented framework to facilitate rapid simulation development

· A sequences of operations to compute the system’s evolution over time

These components have been developed in detail and the first two parts have been combined to form a single, object-oriented framework for the rapid construction of potentially complex protein systems. The third part then takes the output of this framework and evolves it using a sequence of simple yet powerful operations to produce behaviour representative of real systems.

The next chapter will discuss an actual implementation of this design. 
4. System Implementation

4.1. Introduction

This section discusses an implementation of the design presented in the previous section, 

The system is implemented in Java and makes use of the Java3D API for graphical rendering and Swing for the user interface. The object-oriented nature of Java fits well with the design presented. As a result the logical structure of the implementation closely matches the design. This closeness has had another consequence; the simplicity of the transition from the design has ensured that very few problems, conceptual or otherwise were encountered during the implementation. 

The discussion of the implementation is ordered into logical sections of the design. These are:

· Particles

· Interactions

· Objects

· Simulation Groups

· Object Templates

There are two further sections:

· The Java3D Scenegraph

· The User Interface

The first discusses the method in which the simulations are rendered using Java3D. The second introduces the user interface and discusses details of its implementation.

The main classes used in the implementation are shown diagrammatically in this section. In these diagrams relationships are shown by links and the multiplicities of the links are shown to the right of the link, with ‘M’ indicating a multiple participation in the link (i.e. the ‘many’ in a one-to-many relationship).
4.2. Particles

Particles, as detailed in the design, are the combination of spheres and sets of properties (charge, colour, etc.) used to represent sections of proteins. Three main classes are involved in their implementation, and are related as shown in figure 15.
Figure 15. The classes implementing particle primitives.
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The base class implements a single particle and contains the methods to calculate the new position of the particle after a given time-step (using the sequence of operations outlined in the design). 

ParticleTemplate is a generator of particles. That is, the particle template describes a generic particle (with the same properties as a particle instance), from which identical copies are produced. Each template holds a list of the particles it produces.

ParticleGroup holds a list of particle templates and a record of a current particle (as discussed in the design). This allows connections to be formed between particles without requiring the simulation designer to specify every possible connection beforehand. The mechanism allows assertions of the form: particle p can connect to any member of particle class (template) C. 

4.3. Interactions

As well as the particle primitive just mentioned, the other primitives outlined in the design are implemented. Each is implemented by its own class, as shown in figure 16.
Figure 16. The classes implementing interaction primitives.
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ConnectionObj implements rigid connections and, as can be seen from the multiplicities, each connection involves two particle groups. Each connection has an associated distance, which specifies the separation which is to be maintained between the current particles of each group. 

HingeObj implements hinge objects and involves three particle groups. One group specifies the centre of the hinge, which is not affected by its participation. The other two specify the particles to be rotated around the centre. The hinge object has an associated force which is applied constantly to the two hinged particles. 

ElectrostaticObj implements electrostatic interactions between two groups. The force is determined by the charge on the interacting particles.

CollisionObj enforces a condition of non-interpenetration between two objects to ensure that that their integrity as rigid objects is maintained.

Each of these objects only defines the interactions between particles (and the parameters of the interactions), it is the Particle class mentioned previously which calculates their effect on the particle positions.

4.4. Objects

Now that the classes responsible for the implementation of the design primitives have been seen, those responsible for the implementation of objects can be presented. Figure 16 shows the class hierarchy used to represent objects.

Figure 16. The class hierarchy of the object component.
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At the top of the hierarchy is the object itself. The right-hand child of this class is also an object; this reflects the recursive nature of object definitions declared in the design. 

The object class also contains references to any number of particles at its top level. These particles are members of the Particle class defined above.

Each object can have a number of states (with respect to the interactions between its particles and those external to the object). Each instance of the ObjectState class defines one of these states. Object stores the current state to allow the object to be evaluated at runtime. 

Each object state can contain any number of instances of the four interaction primitive classes. In addition to these classes, ObjectState maintains a list of StateChange instances.

The StateChange class is the implementation of the condition sets, discussed in the design, used to detect changes in the state of the object. Each state change holds a variable specifying the new state of the object, should the condition be satisfied. They also hold a list of instances of the Condition class. Each instance of the Condition class is a specific test on the system and if all tests are successful then the state change is deemed successful, resulting in a change in the state of the object. 

4.5. Simulation Groups

Every simulation is controlled from a single instance of a SimulationGroup object. The class hierarchy for the SimulationGroup class is shown in figure 17.
Figure 17. The SimulationGroup class hierarchy.
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In any given simulation there will be a single instance of the SimulationGroup class. This instance is responsible for the coordination of the simulation during runtime. It commands the objects in the simulation to evaluate the interactions they are involved in, given their current state, and then signals the particles in the system to reposition themselves accordingly. As will be seen shortly, the SimulationGroup is also responsible for coordinating the rendering of the graphical display.

SimulationGroup instances are each associated with a single SimulationObj instance. The SimulationObj contains references to every component of the system. As well as all the objects and particles in the system, SimulationObj also references a single instance of the Medium and Boundary classes. The Medium class is used to represent the surrounding fluid in the simulation, e.g. its viscosity and temperature. 

The Boundary class is used to constrain the position of particles. Though not a feature of the design, boundaries have been incorporated into the implementation to improve the quality of simulations possible. Due to diffusion through Brownian motion, the distance between unconnected particles in an unbounded simulation will tend to increase with time. This could result in the objects in a simulation simply drifting away and never interacting, clearly not a desirable result. By introducing boundaries, the particles can be kept close to one another. 

The type of boundary implemented can have significant effects on the resulting simulation. If the boundary simply halts the motion of particles, or causes them to rebound back then the results of the simulation will be unnatural. Instead this implementation uses a type of boundary known as ‘tessellated’ (as described in [Bet00]). If a particle moves outside a tessellated boundary then it is reintroduced at the other side of the simulation area. This reintroduced particle can be viewed as being conceptually a different one than the one that has just left the simulation area. The effect of this type of boundary is to produce an unlimited ‘sea’ of particles, regularly repeated. The particle concentration in this case remains constant and no unnatural limitations are introduced. 
4.6. Object Templates

The design discussed at length an object-oriented framework for the rapid creation of objects. This is implemented by the ObjectTemplate class whose hierarchy is shown in figure 18.
The form of this hierarchy is very similar to that of the Object class. Each Template class creates instances of its corresponding class in the Object class hierarchy, in the same manner that particle templates create instance of particles. 

Each class, in creating an instance of itself, calls each of its child classes in turn, instructing them to return an instance of themselves. 

The only exceptions to this are the StateChange and Condition classes which do not need templates as they do not operate on specific particles, but rather act on particle templates.

Figure 18. The ObjectTemplate class hierarchy. 
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4.7. The Java3D Scenegraph

The class structures responsible for implementing the design framework have now been presented. It has been hinted above that the SimulationGroup class coordinates the update of the graphical display of the simulation. The mechanism for achieving this will now be described. 

The simulation scene is rendered using the Java3D API, an extension to java which facilitates the rapid construction of 3D scenes by allowing them to be described in terms of high-level primitives, such as spheres. Every Java3D scene is created by constructing a scenegraph. The basic structure of the scenegraph used to render the simulation scenes is shown in figure 19.
Figure 19. The Java3D scenegraph used to render the simulation scenes
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At the top of the scenegraph is the Virtual Universe, which contains everything that will be rendered by Java3D.

The next node in the graph is the Hi-Res Locale. This is used to specify an area of high precision coordinates within the low precision Virtual Universe. Only one is ever required to implement the simulation scenes (as the particles are all near each other).

Next is a Branch Group, which is used as a container for the content of the simulation scene. This Branch Group is also used to hold the wire-frame box surrounding the simulation and the lights used to illuminate the scene.

It is to this Branch Group that the SimulationGroup is attached. The SimulationGroup actually extend the BranchGroup class itself. When the SimulationGroup creates the particles that will be involved in the simulation it also creates Java3D sphere objects for them and attaches them to itself, adding them to the 3D scene. At the end of each frame in the simulation the SimulationGroup updates the Java3D scenegraph with the new positions of the particles.

One further class involved in the process deserves a mention. The SimulationGenerator class is used, when the initial conditions of the simulation are being defined, to create the SimulationGroup and add it to the Java3D scenegraph (attaching it to the Branch Group shown above.

It was mentioned in the introduction to this chapter that there where very few problems encountered during the implementation. One exception to this arose from the use of Java3D. Originally the particles where attached to the scenegraph in groups corresponding to their logical structure (the objects containing them). This required the use of more BranchGroup nodes. Java3D refreshed the higher level nodes more frequently than those at lower levels. As a result the particles held in lower level nodes would be seen to lag when the simulation was rotated. This effect was resolved by removing the structure of the particles and storing them all at the top level (where all receive the same high refresh rate).

4.8. The User Interface

The user interface was created using Java Swing, a collection of platform-independent classes designed specifically for the creation of user interfaces. Swing is a lightweight API, meaning that it is written entirely in Java, making it fully portable (this is in comparison to the Abstract Windowing Toolkit, which was heavyweight and hence platform dependent). 

The main problem encountered in the creation of the user interface resulted from the integration of Swing and Java3D. Java3D is heavyweight which causes it to be rendered over any existing Swing components even if they are placed on top. Furthermore, Java3D does not work with many of Swing’s layout managers (templates for the layout of components), resulting in no 3D image being rendered. The problem of integration is gradually being addressed in newer versions of Swing and Java3D, for instance Swing popup menus can be declared as being heavyweight, causing them to be displayed over the Java3D canvas. However, current versions of Swing still suffer from the problems of rendering order and layout management.

Correct integration was achieved in two stages. The first stage involved constructing a new layout manager which supported Java3D. The layout manager was based on a coordinate system, which allowed component positioning to be achieved in a way not possible with the few Swing layout managers which did work with Java3D. The second stage simply involved constraining the components in the user interface in such a way that they could not overlap the Java3D canvas. 

Figure 20 shows the user interface in operation.

Figure 20. The user interface
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4.9. Summary

This chapter has detailed the main classes involved in the implementation of the following aspects of the design:

· Particles

· Interactions

· Objects

· Simulation Groups

· Object Templates

Each aspect has been discussed separately, with each building on previous ones, to create a complete picture of the implemented class structure. The directness of the transition from design to this class structure is a result of an implementation-oriented design and from Java’s suitability to the task. The mechanism by which Java3D scenes are created and maintained has also been discussed. 

The next chapter in this report aims to validate and verify the implementation discussed here.

5. Validation and Verification
5.1. Introduction

This section analyses the accuracy of the system developed in this report. This involves both looking at the correctness of the design (validation) and the correctness of the implementation (verification). There are five main areas that require this analysis. These are: 

· Brownian motion

· Electrostatic forces

· Hinges

· Collision limited motion

· Iterative repositioning

Issues relating to the correctness in design and implementation of each are discussed.

5.2. Brownian Motion

The validity of the equations describing the diffusion of free particles due to Brownian effects has been established to a high degree of certainty by the work of, among others, Perrin and Svedberg ([How01]). It is, therefore, used with confidence as the basis for diffusion modelling in this system.
To ensure that the implementation is correct, it is necessary to verify two properties of the generated displacements. 

Firstly, the average displacement must be equal to zero. If this was not so then the proteins would drift in a particular direction in the absence of external (i.e. non-thermal) forces, which does not happen in reality.
Secondly, the variance must be equal to 2Dt (D is the diffusion coefficient and t is the time-step). This ensures that the magnitude of the displacements have the same average value as they do in a real system (having the same parameters).

In order to verify these statistical properties the implementation was used to generate one thousand test displacements simulating the motion of an average sized protein (3nM radius) diffusing over a period of one microsecond.
The generated data is shown in Figure 21.
Figure 21. The displacements affecting the location of a 3nm protein over a 1 microsecond period.
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It can be seen that the data points are quite well-centred around a displacement of 0nm. To verify this, the average displacement was computed. This gives a mean displacement of 7.14 x 10-12 m, or ~7 picometres, which is sufficiently close to zero to inspire confidence in the implementation, especially when it is considered that the standard deviation of this data is 4.66 x 10-10 m, or ~0.47 nanometres (i.e. the mean of the data is ~1.5% of one standard deviation away from the theoretical mean).

To verify that the data has the correct variance, it is necessary to calculate both the expected and actual variance in the data. 

The expected variance of the data, σe2 = 2Dt. Evaluating this with the values used to produce the data gives σe2 = 2 x 10-19. 

The actual variance is found by squaring all the displacements and then finding their average. Doing this gives σa2 = 1.995 x 10-19. 

It is clear to see that there is a very close correspondence between the expected and actual variances. This would indicate that the simulator accurately implements the equations of Brownian motion.

5.3. Electrostatic Forces

As with was the case with Brownian motion, the equations describing electrostatic forces between objects are well established. This is, once again, taken as sufficient validation. 

Verification of the implementation was carried out by comparing the output of the routine responsible for calculating the electrostatic forces with the results obtained by evaluating the implemented equation:

F = (ε0 x Q1 x Q2) / d2 

The two sets of data obtained were identical, indicating a correct implementation. As the equation is straight-forward and the actual data values are not of interest, they are omitted. 

5.4. Hinge Displacements

Validation of the use of hinges as a primitive of protein systems comes from published literature (see, for example, [Con01]), which identify the occurrence of hinged areas in protein structures. 

A rough form of verification of the correct implementation (with respect to the design) of hinges can be obtained by observing them in operation in a simulation where all other forces have been disabled. This has been done for the implemented system and the hinges do indeed exhibit the expected behaviour.

A more rigorous verification could be made by taking measurements of the approximated behaviour and comparing it to the correct behaviour (obtained through the solution of systems involving torque). This not done here, however, as observations have shown that the hinge implementation, while valid in isolation, are rendered invalid when other forces, in particular diffusion, are considered. 

In systems such as the sample application (which represents a typical use of the toolkit), the magnitude of diffusion of the protein parts is large over the time-steps being considered (e.g. micro- or milliseconds). It is common for the diffusion to be tens of times larger than the diameter of the diffusing particles. This large diffusion was not anticipated in the design and renders the hinges, as they are currently implemented, effectively useless. 

The problem arises from the fact that the particle positions are calculated by first moving the particles by the sum of all the displacements on them (due to hinges, diffusion, etc.). The large diffusion displacements have the effect of randomising the relative positions of the particles, destroying the hinge structure. In real systems this effect does not occur since the hinge is being constantly enforced as the particle diffuses. 

While one possible solution, to solve the system globally has already been considered and was found to be computationally complex, there is another possible solution. The connections in the system could be analysed after each frame to determine the overall properties of the object containing the particle to be moved (drag coefficient, etc.). This information could then be used to limit the particle’s diffusion. This would enable hinges to be preserved. This method would suit small systems very well. It may, however, become infeasible for large objects consisting of many hinges and connections as the calculations could become very complex.

5.5. Collision Limited Motion

The collision limiting mechanism is useful for maintaining the integrity of simulations by preventing incorrect events such as particles passing through one another. It is, however, only an approximation, with several immediate failings. 

One of these is that it stops particles dead. The particle is placed at the point where the first collision occurs, even if this is only a fraction of the distance it is calculated to have diffused through. This makes the assumption that the diffusion of particles occurs in a straight line over the time-step, which is obviously not the case. In reality the particle may have diffused round the particle blocking its direct path. 

Another failing with the collision limiting system is that any collision can stop the particle, even if only a small part of it is blocked along the line of motion. 

With this in mind, it would be incorrect to say the collision limiting system is a completely valid model for restrictions on particle motion. It is, however, not entirely invalid either. It does capture the basic nature of interactions between particles and prevents illogical events from occurring. It is refinement, rather than replacement which is required in order to capture accurately the interactions of particles.
5.6. Iterative Repositioning

The final aspect of the design to be considered is the iterative repositioning mechanism which solves the system approximately by repeatedly reducing the error introduced by the calculated displacements. 

The total error in the system is a measure of the amount of error in each of the individual connections and the amount of error in the location of these connections. By iteratively reducing the error on these individual connections it is possible to reduce the error arbitrarily close to zero. There is a price related to low error margins, however, in the form of computational expense. The accuracy obtained is governed by two factors, the magnitude of the repositioning per iteration (smaller reductions increase accuracy of the connection locations) and the number of iterations (more iterations bring the connections closer to being correctly satisfied). The lower the total error required, then, the higher the number of iterations required. 

Experimentation shows that the rate of reduction in error is also adversely affected by the number of connections in the system. A further factor is the size of the time-step; the greater the time-step, the greater the diffusion and, hence, error. All this combined results in even relatively simple simulations requiring a high number of iterations per frame (e.g. for a microtubule made from protofilaments with a length of 10 dimers, approximately a thousand iterations are required for a realistic simulation at a time-step of 1mS). 

Reduction in this computational load could be achieved in part by optimisation of the implementation. Some of the algorithms have been optimised through the use of early termination points and transformations to remove computationally expensive mathematical operations, e.g. square roots. There is still a great deal of room for improvement, particularly inside the main iteration loop. For instance, when a particle is being repositioned it needs to calculate its direction and distance from the other particles to which it is connected. For simplicity this information is not stored for use when moving these other particles later in the iteration. Doing so would reduce computation significantly. 

An alternative to optimisation would be to implement a diffusion limitation like that mentioned in the hinge section, above. While potentially complex, it would significantly reduce the resulting error in the system and the number of iterations required to remove it.
5.7. Summary

This section has presented a split view of the correctness of the system design and implementation. Some aspects of the design are valid and supported by a body of scientific evidence to that effect (Brownian motion and electrostatic forces). Others have obvious failings due either to over-simplifications (collision limiting) or to fundamental flaws in the implementation (hinge displacements). It has also been seen that it is possible for a mechanism to be perfectly valid and yet have undesirable side effects, such as computational expense (iterative repositioning). 

As well as identifying problems with the current system, this section has hinted at possible future improvements to the system. This topic will be revisited in the conclusion. 

Before that, the next section will evaluate the system with respect to how well it meets certain desirable criteria. . 
6. Evaluation

6.1. Introduction
This section presents an evaluation of the design and implementation presented in this report, with respect to four criteria:

· Accuracy

· Ease of use

· Generality

· Efficiency

These criteria form the basis of a judgement on the utility of the system as a whole, which is presented in the following section:

· Overall utility

The section is then summarised, following which the conclusion to this dissertation will be presented.
6.2. Accuracy
Any simulation package must obtain a minimum level of accuracy if it is to be of use. The precision required from the system will depend on the use to which it is to be put. Scientific simulations, for example, will generally require a high degree of accuracy from which measurements can be taken. Other simulations are used to predict general behaviours of systems, in which case simulations which are realistic, but not necessarily exact may still be of use.

The design presented in this document is, in principle, capable of a reasonable degree of accuracy. In particular its calculations of Brownian motion and electrostatic forces and its iterative repositioning scheme can produce high precision results. 

It does have two features, however, which compromise the accuracy. Firstly, the presence of large diffusions causes inaccurate hinge representations. Secondly, collision-limited movement, although convenient, is fairly inaccurate.

If the last two features were corrected then the simulation system could, at least in theory, produce results with a high degree of accuracy. 

6.3. Ease of Use

Often the systems of interest are large and this can be reflected in the size of simulations of these systems. An important role of simulation packages is to facilitate the rapid development of large simulations. 

This need is elegantly addressed by the object-oriented framework detailed in the design, which allows multiple instances of identical objects and particles to be created from templates. The ease of use is further enhanced by the provision of a user interface from which the simulations can be created and controlled. 
6.4. Generality

Often simulations are designed for a single task and once it is complete, the implementing code is discarded. Other systems, such as the one due to Betts ([Bet00]) are to some extent general, but only within a limited application area. 

The system presented here is highly generalised with regards to sub-cellular simulations, with few restrictions being placed on what is possible at this level. There are two main limits to the system, however. Firstly, the system is restricted to simulations which are sufficiently small that the thermal forces are significantly larger than the inertial forces. The second restriction also involves inertial forces; the system can only create simulations which are large enough and on a long enough time-scale that the inertia of individual atoms does not become an issue.  
6.5. Efficiency
The system presented in this document is by and large reasonably efficient. However, although optimisation has been carried out on some of the algorithms, for the most part the code is unoptimised. There are many opportunities to improve on the efficiency of the code, which would enhance the simulations produced.

There is one exception to this efficiency. The iterative repositioning mechanism is very computationally demanding, due to the large errors introduced by diffusion. A mechanism which prevented these errors would lighten the computational load significantly. 

6.6. Overall Utility

By this stage a very detailed picture of the simulation design and implementation has been built up. It is now time to take a step back and evaluate the usefulness of the entire simulation package. 

The simulation package in its current state of development is able to produce complex dynamic behaviour. It affords rapid development of simulations through its object-oriented framework and user interface.

The simulations produced are sufficiently accurate to allow the observation of reasonably realistic system behaviours. There are two main limitations in the current version of the simulator. One is that hinges do not work correctly in the presence of diffusive forces. The other is that the iterative repositioning mechanism has a high computational load which, while not making larger simulations impossible, increases the time taken to run them. 

The simulation package presented in this document, while not yet a full simulation system, is useful and expressive forerunner of such a system.

6.7. Summary

This section has evaluated the design and implementation of the simulation package with respect to a number of important criteria. It ended by concluding that the simulation package sets the foundations for an accurate and powerful system. 

The next section will present the sample application; a protein system modelled using the toolkit.

7. Sample Application
7.1. Introduction

This section details the design and implementation of the sample application (described in the background and requirements section). The application will be implemented using the simulation system developed in the preceding chapters. 

The application will model the transportation of a vesicle of chemicals, along a microtubule, by the motor protein kinesin. The microtubule will be constructed first, following which, the kinesin protein and the vesicle will be added.

An analysis of the sample application will then be made, with respect to its implications for the simulation toolkit.
7.2. Microtubule

Microtubules are long tubular structures composed from two basic proteins, the α-tubulin and the β-tubulin. Pairs of α- and β-tubulins combine to create the building block of microtubules, the αβ-tubulin dimer. These dimers join longitudinally to form long structures known as protofilaments. From these protofilaments complete microtubules are formed.

The dynamic behaviour involved in the association and disassociation of microtubules is an area of much interest (see, for instance, [Bet00]), but for this sample application the microtubule will be assumed to be neither growing nor shrinking. The number of protofilaments making up a microtubule can vary; in this application a 13 protofilament microtubule will be considered.

Microtubules are tubular structures which form first as sheets and then wrap around and from a seam at the edges of the sheet to form a tubular structure. 
The microtubule to be modelled has a 3-start helical structure, such as has been deduced from electron microscopy ([How01]). In a 3-start microtubule the protofilaments are staggered slightly, so that the protofilaments along the microtubule seam are offset by one and a half dimer lengths (or three tubulin lengths, hence the name 3-start).

The offsets are shown in figure 22, which depicts the protofilament sheet before it is wrapped into the final microtubule.

Figure 22. Protofilament offsets
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Dimers are 8 nanometres in length so, as can be seen in the diagram, the overall offset is 12nM. 

The tubular structure has a diameter of 24nM ([MCB99]). Using this information and the details of the dimers it is possible to calculate the positions of the dimers in the microtubule. Protofilaments (and the resulting microtubules) do not have a fixed length, so for this application a length of 20 dimers will be used. This is very short compared to average lengths, but sufficiently long to show the behaviour of interest. 

In this sample application it was intended to use hinges to give the microtubule rigidity. However, as discussed in the validation and verification section, hinges are not correctly implemented by the simulator. As an alternative, the rigidity has been enforced using connections. This involves placing restrictions on the relative positions of distant particles, e.g. spokes passing through the centre of the tube. This is unrealistic as the actual structure is actually maintained by local rigidity, but it nevertheless achieves the desired effect.

Figure 23 shows the microtubule as modelled by the simulator.

Figure 23. Simulation of a microtubule
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7.3. Kinesin and the Vesicle

Vesicles are balls of chemicals about 40nM in diameter. They are contained within a complex, approximately spherical, structure made from clathrin molecules. The construction of vesicles is an interesting process, but as it does not occur during transportation, it will not be modelled by the sample application. The representation that will be used therefore is a single, immutable sphere. 

The kinesin will be given a more complex representation. Kinesin is principally comprised of a long body, two heads (which bind to the microtubule) and a section which binds to the vesicle. This is shown in figure 24,
Figure 24. A kinesin molecule
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In the sample application the kinesin body is formed from two coiled filaments. The body is inactive during the transportation process and will therefore be represented by a string of (20 x 2.5nM diameter) connected particles with no dynamic behaviour defined. 

The vesicle binding site is simply represented as a connection between the vesicle particle and the final particle of the kinesin body.

Normally the two kinesin heads are separated by a distance of 5.5nM, but the heads are known to step along the microtubules by a distance of 8nM per step. This indicates, though it has not been conclusively proven ([How01]), that there is a conformational change in the neck of the kinesin (the junction between the two heads). It had been intended to use hinges to create dynamic conformational changes, but as detailed in the validation and verification section, this is not possible in the current implementation. Therefore this behaviour is not modelled and instead the motions of the kinesin heads are governed by a combination of rigid connections and Brownian motion.

It is known that kinesin molecules move along a single protofilament of the microtubule (with only occasional crossovers), so for computational efficiency and visual clarity the model of vesicle transportation models a single protofilament only. The resulting set-up is shown in action, in figure 25.
Figure 25. Vesicle Transportation by kinesin.
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7.4. Analysis

The simulations of the microtubule and the transportation system give a tantalising glimpse of the potential of the simulator. They show that both complex structures and complex behaviours can be captured and turned into simulations with accurate evolutionary behaviour and visual clarity. 

They also highlight the importance of a correct implementation of hinges. In the case of the microtubule the absence of hinges does not affect the behaviour, but compromises the reality of the simulation by requiring the introduction of connections between physically unconnected particles. 

The need for an accurate hinge implementation is even more pertinent in the transportation example. The conformational changes which kinesin undergoes give it direction by increasing the probability that the next step will be toward the (+) end of the microtubule (i.e. the end with exposed β-tubulins). In the absence of this directional force, the kinesin in the sample application takes randomly directed steps along the microtubule. Thus the lack of hinges has made the resulting application inaccurate. If the simulation toolkit is to be capable of true generalisation then it will be necessary to implement a useful hinge representation. 
7.5. Summary

This section has discussed the sample application (vesicle transportation). It has looked at the representation of the components in the system. It has gone on to look at the resulting behaviour and how this has been affected by the lack of a useful hinge implementation. 

The next and final section is the conclusion, which reviews the work presented in this document and presents a set of recommendations for future development of the system.
8. Conclusion

8.1. Introduction

This dissertation concludes with a review of the work undertaken. It revisits the motivation for creating a simulation package, before going on to detail the achievements of this project.

Following this a discussion of future developments to the simulation package is presented.
8.2. Motivation

Computer simulations can benefit the study of proteins by going beyond the limits of empirical observations and allowing models of minute processes on very small time-scales to be viewed, manipulated and studied. 

Simulations can be used to experiment with hypotheses about the structure and workings of sub-cellular systems. They can also be used to examine the consequences of these hypotheses.

It is often difficult or time-consuming to interpret and understand raw data produced by the solution of the equations describing protein systems. It is therefore desirable to be able to observe this data visually, preferably in three-dimensions. 

The protein systems of interest can be large, often consisting of multiple instances of the same chemicals. A method of avoiding the need to re-declare functionally equivalent chemicals is necessary to reduce the effort and risk of error involved in implementing simulations. 
8.3. Achievements

Many achievements have been made in this project, at all stages of the work. 

At the design stage a thorough understanding of the nature of protein systems and the issues involved in their simulation was built up. Based on this understanding a unique paradigm for the description and solution of protein systems was developed. Equations were derived to allow the solutions to be calculated, and the derivations were manipulated to make the resulting equations more computationally efficient. The paradigm was also extended to facilitate rapid simulation development.
The implementation stage saw the creation of a simulation toolkit which implemented the modelling paradigm. This implementation included 3D rendering of the simulation using the Java3D API and the creation of a user interface using Java Swing API; the use of both these APIs involved skills acquired during the project. Furthermore, their integration required the development of a new layout manager for Swing to address problems in the integration of the two APIs not currently handled by their manufacturer.

The verification and validation section examined the implementation of the design and confirmed its correctness in many areas. The section also identified a limitation of the implementation with respect to the hinge primitive, preventing the false assumption of correctness. 

The sample application section saw the design and implementation of a protein system, which showed that the generality of the design could be applied to successfully create a dynamic protein simulation.

8.4. Future Work

The work carried out in this dissertation has provided a solid foundation on which future work can be based. There are two main areas of potential future work, development of the toolkit and the creation of simulations.

The latter is clearly the purpose for which the system has been designed. The generality of the design is such that almost any conceivable protein system could be represented. Obviously the protein systems which are actually implemented will be guided by those designing the simulations. 

The former area, the development of the toolkit, has many possible avenues of development. 

One of the first issues to be addressed is that of the hinges. While the design correctly represents them, the implementation does not and until this is resolved, the number of representable systems will be limited. 

Another issue is the efficiency of the code. Currently the method of iteratively repositioning the particles requires a large number of iterations per frame, making large simulations computationally expensive. This situation could be improved on either by optimising the code within the iteration loop, or by improving the method of computing the correct particle positions. 

Other work on the system will largely involve improving and increasing its functionality. 

The toolkit could, for instance, be extended to allow the user to interact with the particles at runtime, applying forces to or moving them. 

Another enhancement would be to increase the range of conditional tests available in the system, thereby improving the range of behaviour which can be simulated. An example of such a test would be a timer test which would only become true after a given time. This would allow the simulation of cases such as bonds which, once broken, do not reform within a certain time period.

The user interface could also be improved by, for instance, the addition of a load/save facility and data outputting (e.g. the creation of graphs based on the changing properties of the system over time). 

The 3D viewing area could also be improved. Currently the system uses the default Java3D rotate and zoom features to move around the simulation area. This means that sooming always keeps the origin (centre of the simulation) in view, making it hard to zoom in on particles near the edge of the simulation.

This is by no means an exhaustive list of possible future work and many of the future improvements will be guided by the requirements of the specific protein systems being modelled. 
8.5. Summary

This document has described the design, implementation and evaluation of a powerful protein simulation system. It has discussed the problems encountered in the process and has looked at how these problems can be resolved.

The document has concluded by reviewing the achievements of the work carried out and presenting suggestions for the continuation and betterment of that work.
Appendix A
Brownian Motion
In order to calculate the diffuse displacement of particles due to Brownian motion, it is necessary to derive a relation which fully describes the factors affecting the position of the protein with respect to time. 

The displacements in each dimension can be calculated separately, and are known to have a Gaussian distribution with variance [How01]:

σ2 = 2Dt

(eq.1)


where 
D = diffusion coefficient (m2/s)

and     
t = the time over which the diffusion takes place (s)

The root-mean-square displacement, xrms, of the particle is equal to the standard deviation, σ, and hence:


xrms = √(2Dt)

(eq.2)

It is now necessary to calculate the diffusion coefficient, D, of the particle. D is defined by the relation due to Stokes-Einstein:


D = kT/f

(eq.3)


where 
k = Boltzmann’s constant (= 1.381 x 10-23 J/K),


 
T = Temperature (°K)


and 
f = frictional coefficient of the particle.

Substituting this into eq.2 gives:

xrms = √(2tkT/f)
(eq.4)
It is now necessary to expand the frictional coefficient, f. The equation for f depends heavily on the shape of the particle. Since the shapes of proteins are not perfectly represented by any simple geometric equation, it is necessary to approximate them. Consider the case where the protein is globular (i.e. near spherical). In such a case it is reasonable to represent the protein as a perfect sphere, since the error this will introduce is quite small. Stokes defined the frictional coefficient of a perfect sphere as:


F = 6πrη 

(eq.5)

where 
r = radius of the sphere (m).


and 
η = viscosity of the medium through which the particle is moving (PaS).

This can be substituted into eq.4 to give:


xrms = √(tkT/3πrη)

(eq.6)


This gives us an equation for the root-mean-square displacement of the particle over a time period, t. From this individual particle displacements can be calculated by computing xrms and multiplying it by a random Gaussian variable with a standard deviation, σ, of 1.
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